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Abstract - This study sought to compare the effectiveness of 

two leading machine learning techniques for solving 

classification problems: feature engineering-based learning 

and deep learning. The feature engineering approach 

focused on selecting and calculating important features, 

while the deep learning approach worked directly with raw 

signals without additional preprocessing. The comparison 

was performed on a case study dataset with imbalanced 

classes. For the feature engineering method, the best model 

was the XGBoost classifier trained on randomly 

oversampled data, achieving an average F1 score of 77%. A 

cost-sensitive version of XGBoost produced a slightly lower 

average F1 score of 75%. In contrast, the deep learning 

approach, using a 1D Convolutional Neural Network 

(CNN), outperformed the other models with an average F1 

score of 80%. The results indicate that the features extracted 

automatically by the CNN’s convolutional layers were more 

relevant for classification than those manually calculated 

through expert knowledge. 
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I. INTRODUCTION 

      Classification tasks are a fundamental area of 
focus in machine learning, with applications across 
various sectors, including healthcare, finance, and 
industry [1-2]. Two primary approaches have 
emerged for addressing these challenges: feature 
engineering-based learning and deep learning. The 
feature engineering approach involves manually 
selecting and extracting features from the data, 
typically using expert knowledge. These extracted 
features are then fed into traditional machine learning 
models, such as decision trees, support vector 
machines, or ensemble methods like XGBoost [3-4]. 
In contrast, deep learning models, including 
Convolutional Neural Networks (CNNs), 
automatically learn hierarchical features from raw 
data, often requiring little to no preprocessing [5-6]. 
This capability for automated feature extraction has 
been particularly advantageous for unstructured data 
such as images, signals, and text [7-8]. 

The choice of the appropriate method depends on 
several factors, including the type of data, the level of 
domain expertise, and available computational 
resources. Feature engineering-based approaches are 
often preferred when interpretability and domain 
knowledge are crucial in solving the problem. 

However, these approaches require considerable time 
and effort to select the most relevant features and may 
not always capture the full complexity of the data. In 
contrast, deep learning models, although more 
computationally demanding, can automatically detect 
and utilize complex features, often achieving better 
performance, particularly for large-scale and high-
dimensional datasets [9-10]. 

This study seeks to conduct a comparative analysis 
of two approaches using a classification task 
involving imbalanced data. Specifically, we assess the 
performance of an XGBoost classifier with manually 
engineered features and compare it with a 1D 
Convolutional Neural Network trained on raw signals. 
Through this analysis, we aim to determine which 
approach yields better results and explore potential 
improvements for both methods. Additionally, this 
study investigates the possibility of combining these 
techniques into a hybrid model to capitalize on the 
strengths of both approaches. 

II. LITERATURE REVIEW 

        In the study presented in [11], the authors 
introduce FaFCNN, a framework based on feature 
fusion using neural networks for disease classification. 
The key contribution of this research is the creation of 
a method that combines multiple types of features, 
including clinical data and imaging information, to 
enhance the accuracy of disease classification tasks. 
The approach utilizes feature fusion, enabling the 
neural network to process various input sources 
simultaneously, which improves generalization and 
overall performance. The framework was tested on 
several disease datasets, demonstrating notable 
improvements in classification performance over 
traditional models. This research emphasizes the 
potential of feature fusion to enhance the robustness of 
deep learning models, particularly in complex medical 
fields characterized by data heterogeneity. 

This study [12] investigates a novel method for 
classifying integers based on residue classes using 
contemporary deep learning techniques. The authors 
concentrate on an optimization strategy that leverages 
residue classes to efficiently classify integers, a 
relatively unconventional approach in machine 
learning literature. The paper introduces a deep 
learning-based framework that automatically extracts 
relevant features from integer data by converting them 
into residue classes, improving the model's capability 
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to handle large-scale datasets. The proposed method 
surpasses traditional machine learning models in both 
accuracy and computational efficiency. This research 
highlights the potential of deep learning in specialized 
fields like number theory and discrete mathematics. 

In this paper [13], Adaptive Ensemble Learning 
(AEL) is presented as an advanced method for 
enhancing the performance of deep neural networks 
(DNNs). The author focuses on improving DNN 
performance through intelligent feature fusion, 
integrated within an ensemble learning framework. 
AEL uses multiple base learners to generate varied 
feature representations, which are then combined to 
offer a more comprehensive understanding of the data. 
This technique has been shown to enhance the model's 
accuracy by addressing the drawbacks of individual 
neural networks, such as overfitting and limited 
generalization. The study's findings emphasize that 
combining ensemble learning with adaptive feature 
fusion presents a promising approach for improving 
DNN-based classifiers in areas like pattern 
recognition and image processing. 

This paper [14] compares two methods—feature-
engineering and feature-learning—for classifying 
multilingual translationese. The study focuses on 
differentiating translated text from non-translated text 
across various languages. The feature-engineering 
method relies on manually designed features based on 
linguistic and syntactic characteristics, while the 
feature-learning method utilizes deep learning models 
to automatically extract features from raw text data. 
The comparison shows that the feature-learning 
approach, particularly with convolutional neural 
networks (CNNs) and recurrent neural networks 
(RNNs), outperforms traditional feature-engineering 
models in terms of classification accuracy. However, 
the study also addresses the challenges of training 
deep learning models with multilingual data, such as 
the requirement for large, balanced datasets. This 
research highlights the increasing significance of end-
to-end deep learning models in natural language 
processing tasks. 

This study [15] presents a case study on malware 
classification using a hybrid approach that integrates 
feature engineering and deep learning. The authors 
suggest that combining traditional feature engineering 
techniques, such as opcode frequency and API call 
sequences, with deep learning methods can greatly 
enhance malware detection performance. The 
approach merges manually crafted features with those 
learned by deep learning models to capitalize on the 
advantages of both techniques. The case study shows 
that the hybrid model outperforms models based 
solely on feature engineering or deep learning. This 
research has significant implications for 
cybersecurity, particularly in detecting new and 
unknown malware variants, where deep learning 
alone may face challenges due to limited data. 

III. METHODOLOGY 

The dataset used for this study was obtained from 

the 2017 PhysioNet cardiology scientific computing 
challenge. It comprises 8,528 single-lead ECG signal 
recordings, with durations ranging from 9 seconds to 
just over 60 seconds. The data is divided into four 
distinct classes: Standard, representing signals from 
healthy patients; AF, indicating patients with atrial 
fibrillation; Other, containing signals from patients 
with irregular rhythms that do not fall into the AF 
category; and Noisy, representing signals that are 
unclear or unidentifiable. An initial analysis of the 
dataset revealed an imbalance, with the majority of 
signals belonging to the Standard and Other 
categories, while the AF and Noisy classes have much 
smaller proportions. This imbalance was further 
highlighted through a visualization in Figure 1, which 
shows the distribution of data across the different 
classes. 

 
Fig. 1. Distribution of data in the classes 

The signals in the dataset were preprocessed by 
normalizing their amplitude and organizing them for 
easier manipulation. Feature engineering was then 
applied to reduce the problem's dimensionality and 
extract key information for classification. This 
process involved identifying the P, Q, R, S, and T 
waves in the signals using the Neurokit2 and BioSPPy 
libraries. A total of 56 descriptors were extracted, 
which were grouped into four categories: 

• Medical domain descriptors: These included 
the amplitudes of the P, Q, S, and T waves, the P-to-
R wave ratio (important for detecting atrial 
fibrillation), and the mean durations and standard 
deviations of critical intervals like QRS, ST, and QT. 
Heart rate metrics, including maximum, minimum, 
and average values, were also included, along with 
statistical descriptors such as mean, median, standard 
deviation, and kurtosis. 

• Temporal characteristics: These descriptors, 
derived from heart rate variability, were obtained 
using Neurokit2 and included metrics like RMSSD, 
meanNN, SDNN, SDSD, CVNN, CVSD, and pNN20, 
pNN50. 

• Geometric features: These descriptors analyzed 
the non-linear characteristics of RR intervals, 
including TINN, HTI, and indices from the Poincaré 
plot, such as SD1, SD2, and the SD1/SD2 ratio. 

• Time-frequency characteristics: These were 

0

1000

2000

3000

4000

5000

Normal Atrail Other Noisy

Distribution of data in classes

http://www.ijcstjournal.org/


 

International Conference on Advances in Management & Technology (ICAMT- March 2025) 
 

ISSN: 2347-8578                                         www.ijcstjournal.org                                                  Page 140 

derived from the discrete wavelet transform of the 
signals, with standard deviations of the approximation 
and detail coefficients across 8 levels. The Daubechies 
6 wavelet was chosen due to its similarity to the QRS 
complex in ECG signals. 

After reducing the original dataset to the 56 
descriptors collected in the first stage, five different 
models were trained to evaluate their performance. 
These models included Support Vector Machine 
(SVM), Multinomial Logistic Regression, Random 
Forest, XGBoost, and Multilayer Perceptron. Each 
model was assessed based on its accuracy in 
classifying the ECG signals, offering a comprehensive 
comparison of their effectiveness with the extracted 
features. The results from these models were analyzed 
to determine the most suitable approach for the 
classification task at hand. 

 

IV. RESULTS ANALYSIS 

 

       Figure 2 provides a summary of the average 

performance in terms of precision, recall, and F1 score 

for each of the five trained models, using the descriptors 

gathered during the feature engineering phase. It is 

evident that the logistic regression and XGBoost 

classifiers performed the best when considering all 

metrics. However, when evaluating the performance for 

each class, as shown in Tables 1 and 3, it is concluded 

that XGBoost is the top classifier. This is because it 

achieves excellent results for the first three classes 

(normal, atrial fibrillation, and other), which are the 

most crucial for pathology detection. The noisy class is 

considered a marker of (rare) errors during the 

examination process. Additionally, XGBoost is deemed 

the most suitable model in this context, as it is based on 

decision trees, with added optimization elements that 

have enhanced its utility since its introduction. The flow 

of information in decision trees closely mirrors how 

doctors assess diseases and diagnose patients. 

 
Fig. 2. Average metrics for each trained classifier 

 

A. Addressing Class Imbalance 

As mentioned in section IV-A, there is a 
significant imbalance between the classes in this 

problem. Several techniques can be used to address 
this issue, and in this study, two common approaches 
were employed: class oversampling and cost-sensitive 
classification. 

B. Oversampling 

Oversampling involves generating new instances 
of the minority classes in the training set, allowing the 
algorithm to learn more about those classes. Various 
oversampling methods exist, including random 
oversampling, SMOTE, ADASYN, and others. 
Random oversampling replicates data from the 
minority classes randomly. While this method does 
not result in the loss of any data, it may increase the 
risk of overfitting since the same information is 
repeated. SMOTE, in contrast, creates synthetic 
examples using the k-nearest neighbors algorithm, 
while ADASYN generates synthetic data based on 
extreme observations (border points). For this study, 
random oversampling was chosen for its simplicity. 
Additionally, classes 2, 3, and 4 were oversampled to 
an optimal amount, which was determined through a 
search, ensuring the imbalance was still present but 
less pronounced. Classes with an equal number of 
instances were not oversampled to avoid overfitting. 
The optimal oversampling amounts were determined 
as follows: 

• Class 2: between 600 and 2000 

• Class 3: between 2100 and 3500 

• Class 4: between 300 and 500 

The optimal oversampling was determined by 
maximizing the F1 score. Based on this, the classes 
were oversampled to 1600, 3400, and 300 instances, 
respectively. The classification results for the 
XGBoost model trained with the oversampled dataset 
are shown in Table 1 and Figure 3. 

TABLE I. CLASSIFICATION REPORT FOR XGBOOST CLASSIFIER 

TRAINED ON OVERSAMPLED DATA 

Class Precision Recall Score F1 

Normal 0.8845 0.9245 0.9045 

Atrial Fibrillation  0.8045 0.8045 0.8045 

Other 0.7845 0.7245 0.7545 

Noisy 0.6745 0.6445 0.6645 
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Fig. 3. Normalized confusion matrix of the XGBoost classifier 

trained on oversampled data 

 

C. Cost-sensitive classification 

The MetaCost algorithm proposed in [16] was 
chosen for this study. Cost-sensitive classification 
remains a relatively underexplored area. While the 
significance of the cost matrix for algorithm 
performance is well-established, as it aims to 
minimize classification errors, clear guidelines for 
defining the matrix are lacking, as it varies depending 
on the specific dataset. In this case, the cost matrix 
was determined after testing a range of values for the 
classification errors in the class with the poorest 
performance (noisy).  

TABLE II.  METACOST COST MATRIX 

 Normal 
Atrial 

Fibrillation  
Other Noisy 

Normal 0 1 1 100 

Atrial Fibrillation  1 0 1 100 

Other 1 1 0 100 

Noisy 80 80 80 0 

 

These values were integers between 50 and 200, in 

increments of 10. A cost of 0 was assigned to the 

diagonal (correct classifications), and a cost of 1 was 

used for all other cases. Table 2 presents the resulting 

cost matrix. Additionally, Table 3 and Figure 4 show the 

performance of the cost-sensitive XGB model, 

highlighting a 5% improvement in the F1 score for class 

4 compared to the non-cost-sensitive model. 
 

TABLE III. CLASSIFICATION REPORT FOR COST-SENSITIVE XGBOOST 

CLASSIFIER (METACOST) 

Class Precision Recall Score F1 

Normal 0.8446 0.9745 0.9045 

Atrial Fibrillation  0.7846 0.7245 0.7545 

Other 0.8346 0.6245 0.7145 

Noisy 0.6846 0.6445 0.6645 

 
Fig. 4. Normalized confusion matrix for the cost-sensitive XGBoost 

classifier 

In this case, the MetaCost algorithm adjusted 640 labels 

compared to the original vector. The final costs of the 

classifier, both with and without MetaCost, were then 

computed as shown in equation 1, using the non-

normalized confusion matrix. As demonstrated in Table 

4, MetaCost successfully results in a model with 

reduced cost and improved average performance. 

 

𝐶𝑜𝑠𝑡 =  ∑ ∑ (𝐶𝑜𝑛𝑓𝑢𝑠𝑖𝑜𝑛𝑀𝑎𝑡𝑟𝑖𝑥 ⊙𝑛
𝑖=1

𝑛
𝑖=1

𝐶𝑜𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥) (1) 
 

TABLE  IV. COSTS FINALS ALGORITHM XGBOOST 

 

Algorithm Cost 

XGBoost metacost 3074 

XGBoost 3788 

 
Fig. 5. Comparison of average metrics for treatments against class 

imbalance 

Figure 5 displays the average metric results for the base 

XGB algorithm, along with the outcomes after applying 

two data imbalance treatment methods: class 

oversampling and cost-sensitive classification using the 

MetaCost algorithm. In conclusion, both methods 

enhance the model's overall performance, with the 

oversampling technique yielding more favorable results 

for precision, recall, and average F1 score, achieving 

values of 0.77, 0.76, and 0.77, respectively. Figure 5. 

Comparison of average metrics for class imbalance 

treatments. 

D. Deep Learning Approach 

As outlined in the challenge [17] from which the 
database was derived, the signals were collected using 
a home ECG from a portable device by AliveCor. 
Given this, 1-dimensional convolutional neural 
networks (CNNs) were chosen for this approach due 
to their proven effectiveness in analyzing time-series 
and sensor data. Each convolutional network requires 
a fully connected layer for classification purposes, so 
the architecture was divided into two parts: a 
convolutional section and a fully connected section. 
To determine the optimal architecture, research on 
similar problems was reviewed, consulting studies [1-
7]. After conducting an exhaustive search for 
hyperparameters, the most suitable architecture was 
selected. The number of filters ranged from 16 to 128, 
based on the study in [8] focused on detecting sleep 
stages from electroencephalography (EEG) signals. 
Although [8] used a maximum of 64 filters, the search 
was extended to 128 due to differences in the data 
(ECG vs. EEG signals) and the fact that the ECG 
recordings in this study are twice as long (over 60 
seconds vs. 30 seconds in the EEG signals of [8]). 
Filter sizes were tested with values of 3, 5, and 7, 
following the recommendations in [8] and [6]. The 
number of convolutional layers varied between 3 and 
9. L2 regularization was applied to both the kernels 
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and the bias. The learning rate and regularization were 
tested with values of 10⁻⁴, 10⁻³, 10⁻², and 10⁻¹. Each 
convolutional block consisted of a convolutional layer 
with ReLU activation and a MaxPooling layer with a 
pool size of 2. For the dense layers, the number of 
neurons was varied between 128, 64, 32, and 16, using 
between 2 and 4 layers. The data was split into 80% 
for training, 10% for validation, and 10% for testing, 
with the network trained for 250 epochs, as illustrated 
in Figure 6. The classification results from this 
architecture are presented in Figure 7. 

The proposed deep learning architecture 
incorporates several layers designed for feature 
extraction and classification. The model begins with a 
Masking layer to handle missing values or padding in 
the input data. This is followed by multiple 1D 
Convolutional (Conv1D) layers, each equipped with 
filters, activation functions, and regularization to 
extract important features from the ECG signals. The 
first Conv1D layer uses 16 filters with a kernel size of 
7, ReLU activation, and l2 regularization of 0.001 to 
prevent overfitting. After each convolutional layer, a 
MaxPooling layer with a pool size of 2 reduces the 
dimensionality while retaining key features. 

The convolutional architecture is extended with 
additional Conv1D layers, starting with 16 filters and 
progressing to 32, 64, and ultimately 128 filters as the 
network deepens. These layers consistently use a 7-
sized kernel, ReLU activation, and l2(0.001) 
regularization. MaxPooling layers follow each 
convolutional block to reduce the feature map size. To 
improve generalization, a Dropout layer with a rate of 
0.5 is added after several later convolutional blocks to 
randomly disable neurons during training. 

After feature extraction, the network progresses to its 

fully connected (dense) layers. The output from the final 

Conv1D layer is flattened using a Flatten layer. The 

fully connected layers begin with a Dense layer 

consisting of 128 neurons, applying ReLU activation 

and l2(0.001) regularization. This is followed by a 

sequence of dense layers with 64 and 32 neurons, each 

using the same activation function and regularization. 

Dropout layers with a rate of 0.5 are added between the 

dense layers to reduce overfitting. Finally, a Dense 

output layer with 4 neurons and a softmax activation 

function produces the final class probabilities, which 

correspond to the four categories: Standard, AF, Other, 

and Noisy. 

 

 
Fig. 6. Training and validation accuracy for network architecture 

TABLE V. REPORT OF CLASSIFICATION ´ N FOR 1D CNN 

 

Class Accuracy Recall Score F1 

Normal 0.9046 0.9245 0.9145 

Fibrillation headset 0.7846 0.7945 0.7945 

Other 0.7946 0.7645 0.7845 

Noisy 0.7946 0.7245 0.7545 

Average 0.8196 0.8045 0.8145 

 
Fig. 7. Normalized confusion matrix for 1D CNN 

The model introduced in [7] achieves an average 
classification F1 score of 78.2%, whereas this work 
reports an F1 score of 80%, as presented in Table 5. 
This indicates a potential limitation in [7]'s method of 
normalizing signal durations to a fixed length. 
Although this approach is statistically valid, when the 
signal duration exceeds the fixed length, it is divided 
into overlapping segments (50% overlap). While this 
creates more training data, it may also increase 
dependencies between the segments. The advantages 
of the approach in this study include, first, maintaining 
all the original medical data through padding and 
masking techniques, which helps avoid issues like 
data dependency and overfitting. Second, a different 
combination of filter numbers is used (16 to 128 
filters, compared to 32 to 512 filters in [7]), resulting 
in a less computationally demanding model with 
fewer trainable parameters (720,000 vs. 3.2 million in 
[7]), thus reducing training time. Third, a different 
regularization technique (l2 vs. BatchNormalization 
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in [7]) is applied to both the kernels and bias nodes. 

V. CONCLUSION 

 

The study clearly showed that the deep learning 
approach, particularly the 1D Convolutional Neural 
Network, surpassed the feature engineering-based 
XGBoost models in terms of F1 score. This highlights 
that automated feature extraction using convolutional 
layers is more effective for the given classification 
task than manually selecting features. To improve the 
performance of feature engineering-based models, 
future research could focus on increasing the number 
of features, filtering out irrelevant ones, and 
addressing class imbalance using advanced 
resampling techniques. Furthermore, a hybrid model 
combining both methods could be investigated, where 
the CNN handles feature extraction and the XGBoost 
model functions as the final classifier. While such an 
ensemble model would demand more computational 
power, it could harness the advantages of both 
approaches and potentially lead to better classification 
results.  
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